

Statics and stability for thin-walled shear beam with cross-section distortion

Robert Cybulski (s080836)

Master's thesis

Technical University of Denmark- DTU Byg July 12, 2010

Project Advisors:

- o Associate Prof. Leif Otto Nielsen, Department of Civil Engineering
- o Prof. Jeppe Jönsson, Department of Civil Engineering

Table of Contents

Αb	str	ract	4	
Int	roc	duction	5	
	1.	Notations and keywords used for the theory	5	
	2.	The linear statics of TWB	6	
	á	a) Bending in the cross-section	6	
	I	Example 1	8	
	k	b) Timoshenko beam behavior	15	
	I	Example 2	16	
	(c) St. Venant torsion of the walls	17	
	I	Example 3	17	
	(d) TWB homogeneous differential equations	18	
	•	e) Polynomial solution and solution consisting of exponential modes	19	
	I	Example 4	20	
Chapter 1- Interpolation matrix for TWB element				
	1.	Consideration of TWB element	24	
Ch	nap	oter 2- FEM formulation of TWB element and structure for stability problems	26	
	1.	The TWB element stiffness matrix	26	
	2.	The TWB element stress-stabilization matrix under constant compression load	27	
,	3.	The TWB element stress-stabilization matrix under in-plane bending	30	
	4.	The stiffness matrix and the stress-stabilization matrix of the system	31	
	5.	The eigenvalue solution		
Cr	nap	oter 3- FEM program for TWB structure with tests		
	1.	Description of the "TWBSaS"		
	2.	Results testing		
•		a) Warping mode		
	•	~, ····································		

Master's thesis

b)	Column buckling mode without shear consideration	35			
c)	Column buckling mode with shear consideration	37			
d)	Torsion buckling	40			
e)	In-plane bending	43			
Chapter	4- Application of TWBSaS	46			
1. G	Blobal column buckling and local plate buckling investigation	46			
Conclusions5					
Bibliography58					
Software58					
Append	ix 1	59			
Appendix 2					
Appendi	Appendix 36				
Appendi	Appendix 460				

Abstract

This Master's thesis deals with the thin-walled shear beam statics and stability with cross-section distortion. The linear statics based on reference [6] includes the bending in the cross-section of each wall as a Bernoulli beam, Timoshenko beam behavior (in-plane stretch, bending and shear of walls) with free torsion as a Saint-Venant torsion of the walls in the thin-walled beam's element direction. The material is elastic. The stability phenomenon includes formulation of the element stiffness matrix and the stress-stabilization matrix under constant compression load and under in-plane banding. Then the stiffness matrix and the stress-stabilization matrix on the system level with eigenvalue problem formulation are presented.

The purposes of this work are the following:

- to implement an example for theory presented in [6] due to better understanding of the linear statics formulation of the thin-walled beam,
- to present the solution of homogeneous differential equations in terms of polynomial solution and solution consisting of the exponential modes on arbitrary chosen thin-walled beam cross-sections,
- to extend theory in reference [6] by the buckling theory,
- to implement above theories into MatLab and create the program which can handle different cases of the thin-walled beam's buckling modes,
- to compare results given in the program with the existing theories.

The created program called "Thin-walled beam statics and stability" (TWBSaS) has been checked for the following cases of the buckling modes:

- the warping mode with I-profile cross-section,
- the column buckling mode with and without shear consideration with a single wall and I-profile cross-section under constant compression load,
- the torsion buckling mode with a cruciform cross-section under constant compression load,
- the mode caused by in-plane bending with a slender I-profile cross-section,
- the local buckling mode and distortional mode with hollow-core rectangular cross-section under constant compression load.

The software used for the present work is MatLab (numerical calculus) and Maxima (analytical calculus).